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SOLUCOES NUMERICAS DA EQUACAO DE SCHRODINGER:
UMA ABORDAGEM COM DIFERENCAS FINITAS PARA
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RESUMO

A mecanica quantica é a area da Fisica que estuda o comportamento e as propriedades de particulas
subatdémicas que compoem a matéria. Por isso, 0 movimento de particulas como o elétron ndo pode ser
descrito com base nos principios da mecanica classica. Entre as diversas aplicacdes da mecanica
quantica, destaca-se a modelagem de sistemas moleculares, nos quais as interacdes entre atomos
exigem uma descri¢do em termos de potenciais que reflitam sua natureza quantica. Nesse contexto, o
potencial de Lennard-Jones se apresenta como uma ferramenta importante, por estar associado ao
comportamento de moléculas e ser amplamente utilizado em simula¢des de dindmica molecular (DM).
Ele descreve a interacdo entre 4tomos e moléculas, permitindo, por exemplo, a modelagem das forcas
intermoleculares entre dtomos de argdnio no estado liquido. Este projeto teve como objetivo inicial
aplicar o método de diferencas finitas (MDF) a equacdo de Schrédinger com o potencial de
Lennard-Jones, em conjunto com o formalismo da mecanica quantica supersimétrica, e comparar 0s
resultados com os obtidos via calculo variacional. O MDF é uma abordagem numérica que permite
discretizar o espaco e o tempo, convertendo equagdes diferenciais em sistemas de equacdes algébricas
resolviveis computacionalmente. Contudo, a aplicacdo ao potencial de Lennard-Jones revelou-se
instdvel numericamente. Essa limitacdo levou a um redirecionamento do estudo para potenciais
candnicos e de solucdo analitica conhecida, como o potencial degrau e o fenomeno de tunelamento
quantico. O modelo resultante demonstrou eficacia didatica e estabeleceu uma base sélida para futuras
investigacoes em simulag0es numeéricas na mecanica quantica.
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INTRODUCAO

De maneira geral, a mecanica quantica é a area da Fisica que estuda o comportamento
e as propriedades de particulas subatdmicas que compdem a matéria. Com isso, 0 movimento
de particulas como o elétron ndo podem ser descritos em termos da mecanica classica
(ZEILMANN, 2024). Sendo assim, segundo Lobato (2024), entre 1926 e 1927, a partir do
comportamento ondulatorio de uma particula e a conservacao de energia, Erwin Schrodinger
desenvolveu uma equacao que descreve as acoes dessa particula, a equagao de Schrodinger.

A caracteristica principal da equacdo de Schrodinger é o potencial utilizado. Isso
significa que, em certos casos, a solucdao da equagdo ndo é trivial e s6 pode ser encontrada
através de métodos numéricos, dependendo da natureza desse potencial. Um método
numérico bastante utilizado para solucionar esse tipo de problema é o Método de Diferencas
Finitas (MDF). O MDF é uma abordagem numérica que permite discretizar o espago e o
tempo, transformando a equacdo diferencial em um conjunto de equacGes algébricas que
podem ser resolvidas computacionalmente (MONERAT, 2010).

Inicialmente, o intuito deste trabalho foi utilizar o método de diferencas finitas (MDF)
para solucionar a equacao para o potencial de Lennard-Jones, ja que o método aplicado a este
potencial aparentava ndo ser tdo abordado na literatura. O potencial de Lennard-Jones esta
associado ao comportamento de moléculas (OLIVEIRA, 2019). Ou seja, € bastante utilizado
em Dinamica Molecular (DM), pois descreve a interacdo dos atomos e moléculas, com isso, o
potencial de Lennard-Jones pode ser aplicado para o calculo de interagdes intermoleculares,
por exemplo, de atomos de argonio no estado liquido (COLUCI, s.d.).

Em virtude das instabilidades na solucdao para o potencial de Lennard-Jones, a
pesquisa foi redirecionada para a andlise de potenciais canonicos, cujas solugdes sdo analiticas

e bem estabelecidas, como os casos do potencial degrau e do tunelamento quantico.
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REFERENCIAL TEORICO
Método de Diferencas Finitas (MDF)

O método de diferencas finitas (MDF) é utilizado para transformar equagoes diferenciais
ordinarias ou parciais, linear ou ndo linear, em um sistema de equacoes algébricas (PEREIRA
apud RUGGIERO; LOPES, 2020). Assim, as incognitas das equagdes sdo os valores da
funcdo em cada ponto de um conjunto discreto, que estdo igualmente espacados (MONERAT,
2010). Ou seja, a solucdo de uma equacao diferencial para um conjunto de valores (dominio)
nos leva ao conhecimento dos valores das variaveis estudadas, por isso o0 método consiste em
resolver as equacdes em pontos discretos (DA SILVA, 2011).

Figura 1: Representacdo da discretizacdo da variavel de integragao.
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Fonte: O proprio autor.
De acordo com Monerat (2010), pode-se obter as férmulas de aproximacdo através da

série de Taylor:

oy = fe) + fooh + 1 o ©
i1 i ,~ , SO+ 0m)
em que h é o espacamento. Podemos considerar até o termo de primeira ordem e isolando,
tem-se:
S )=fx)
! i ; )
alx) = 5

que é a diferenciacdo ascendente. De maneira similar, pode-se escrever a diferenciacdo

descendente
fix 2 3
) =flx) = fx)h + L 3)
oquelevaa ; JVAE: )l_h + Oh)
Sox)=fx )
, . 4
fD(x =" @

e, por fim, escrever a centrada subtraindo as duas séries de Taylor, 1 por 3, chega-se a
flx

=31
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veja que foi possivel definir a discretizagdo para a diferenciacdo de primeira ordem. Na figura
2 é possivel observar a representacdo geométrica das derivadas obtidas a partir do método de
diferencas finitas.

Figura 2: Representacdo geométrica da derivada. Em verde temos a derivada descendente

(retrograda), em vermelho a centrada e, em azul, a ascendente (avancada).
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Fonte: O proprio autor.
Método de diferencas finitas e equacao de Schrodinger: sistema de equacoes algébricas
Na mecanica quantica, para descrever as caracteristica de uma particula, teremos que
determinar a funcdo de onda W(x, 7). Assim, segundo Griffiths (2011), para obter a funcado de

onda é necessario resolver a equagao de Schrodinger 1D, que é dada por:
2 2

h—alg_kvqy (6)

v
lhat__ 2m 5y

Em que pode-se escrever a parte independente do tempo da seguinte forma,

— h2 azw + le =E1P (7)

2m axz
note que para determinar y(x) iremos precisar do potencial V. A partir do calculo variacional,

a eq.(7) é escrita como,

AHlp (x) = Ey(x) €))
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A equacgdo de Schrodinger independente do tempo tem uma derivada de segunda ordem,

entdo, pode-se fazer o processo de diferenciacdao de segunda ordem
for 2o )

fe= ” ©)
Pode-se escrever a eq.(7), como
| Pen) 22O F ) ) = By
(10)

fazendo h = 1.
Segundo Pereira (2020), a equacao de Schrodinger independente do tempo é um problema

de valor de contorno (PVC), é facil observar isso devido a dependéncia apenas na posicao.
Adotando (x O) = P(x 1 ) = 0, tem-se

n+

Y(xy)
(X)) = w(xZ)
Y(x,) (1)
0 que nos leva a escrever
(12)
em que
F(x) =:7a%* + V(x) (13)

De acordo com Monerat (2010), a matriz. n X n é real e simétrica, ou seja, diagonalizavel.

Assim, podemos garantir a existéncia de uma base de autoestados.
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METODOLOGIA

Para o desenvolvimento deste trabalho, foram seguidas as seguintes etapas:

1. Realizacdo de uma revisao bibliografica aprofundada.

2. Criacdo de um modelo computacional para a equacdo de Schrdodinger, capaz de
resolver diversos potenciais canonicos.

3. Comparagdo dos resultados computacionais com os dados e solucdes ja estabelecidos
na literatura.

Para construcdo do modelo computacional, foi utilizado a linguagem de programacao
em Python, onde foram utilizadas as bibliotecas: Numpy, Scipy.linalg e Matplotlib
(MIRANDA, 2018). O cédigo seguiu um padrao, definindo inicialmente as constantes, depois
o potencial e a construcdo da matriz Hamiltoniana. Como por exemplo, o codigo utilizado

para o potencial degrau:

>>> from scipy.linalg import eigh
>>> import numpy as np
>>> import matplotlib.pyplot as plt
# Constantes
>>> hbar = 1
>>>m = 1
>>> x0 = -25
>>> xNml = 25
>>> N = 1001 # mais pontos melhora preciséo
# Passo espacial
>>> h = (xNm1 - x0) / (N - 1)
>>> x = np.linspace(x0, xNm1, N)
# Potencial degrau: V=0 se x<0, V=0.5 se x>=0
>>> V = np.array([0 if xi < 0 else 0.5 for xi in x])
# Hamiltoniano
H = np.zeros((N, N))
for i in range(N):
H[i, i] = V[i] + hbar**2/(m*h**2) # diagonal

if 1 > e:
H[i, i-1] = -hbar**2/(2*m*h**2)
if i < N-1:
H[i, i+1] = -hbar**2/(2*m*h**2)

# Resolver autovalores

+ I+
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>>> energias, autovetores = eigh(H)

# Pegar o estado fundamental
>>> psi = autovetores[:, 0]
# Normalizar
>>> psi = psi / np.sqgrt(np.sum(np.abs(psi)**2) * h)
>>> print("Energias (primeiros 5):")
for n in range(5):
print(f"n={n}: {energias[n]:.4f}")
# Plot
>>> plt.plot(x, psi, label=r"$\psi(x)$")
>>> plt.plot(x, V, label="V(x)", color="red")
>>> plt.xlabel("x")
>>> plt.ylabel("$\psi(x)$, V(x)")
>>> plt.title("Funcédo de Onda - Potrau")
>>> plt.legend()
>>> plt.grid(True)
>>> plt.savefig("potencial_degrau.png", dpi=500)
>>> plt.show()

Para os outros potenciais canonicos foi utilizado o mesmo padrdo de cédigo,
modificando apenas o potencial. Na tabela 1, estdo descritos os potenciais solucionados
juntamente com uma breve descri¢do de cada um. Os cédigos completos podem ser acessados

em; JBhulacdo dos resultados - MDF .pdf

Tabela 1: Descricdo breve de cada potencial simulado com método de diferencas finitas.

Potencial Descricao

Um potencial que é zero dentro de uma
Poco quadrado Infinito regido finita e infinito fora dela. As
particulas ficam confinadas no poco.

E um potencial que muda abruptamente de
Potencial Degrau valor em algum ponto do espaco. Utilizado
para estudar reflexdo e transmissdo de
particulas em mecanica quantica.

2 2
Potencial do tipo V(x) = ' m , cresce

Oscilador Harmonico . L2
quadraticamente com a distancia do centro.

Fonte: O proprio autor.
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RESULTADOS E DISCUSSAO
O primeiro potencial canénico simulado foi o poco quadrado infinito, geralmente o
ponto de partida no estudo da mecéanica quantica. Esse potencial é definido por uma funcgdo
V(x) nula dentro de uma regido de largura L. No caso considerado, adotou-se L = 1. A partir
disso, foi possivel simular o estado fundamental, bem como o primeiro e o segundo estados
excitados, como ilustrado na Figura 3.
Figura 3: Simulacdo do estado fundamental (azul), primeiro estado excitado (amarelo) e

segundo estado excitado (verde) do po¢o quadrado infinito.
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Fonte: O proprio autor.

J& para o potencial degrau, defini-se V(x) = O parax < O e V(x) = 0, 5 para x > 0,
observe a figura 4. Assim, nota-se que a funcdo de onda apresenta um comportamento
oscilatorio na regido x < 0, onde o potencial é nulo, e passa a decair exponencialmente para
x > 0, regido em que o potencial se torna constante e maior que a energia da particula.

No contexto do potencial degrau, pode-se ainda considerar uma terceira regidao, em que
o potencial retorna a ser nulo. Nesse cendrio, torna-se evidente o fendomeno do tunelamento
quantico, caracterizado pela possibilidade de a funcdo de onda atravessar a barreira e se

propagar novamente apos ela.

|
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Funcao de Onda - potencial degrau
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Fonte: O proprio autor.
Dessa forma, nesta simulacao mantém-se as condigdes do potencial mostradas na Figura
4, sendo adicionada uma terceira regido, conforme ilustrado na Figura 5. Ou seja, para
0 < x < 1,5 o potencial é V(x) = 0, 5, ap0s essa barreira, V(x) anula-se novamente.
Figura 5: Simulacdo do tunelamento quantico com adaptacdo no potencial degrau, tornando

uma barreira de potencial. Para n = 4.
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Fonte: O proprio autor.
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Por fim, foi realizada a simulacdo do potencial do oscilador harménico quantico, descrito
na Tabela 1. Na Figura 6, observa-se o comportamento caracteristico das funcdes de onda,
evidenciando os trés primeiros estados quanticos. Nota-se que as autofuncdes apresentam a
forma esperada, com simetria alternada e oscilacdes crescentes a medida que aumenta o
nlimero quantico.

Figura 6: Simulagado do potencial do oscilador harmonico quantico.
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Fonte: O proprio autor.
Para aprofundar a analise do oscilador harménico quantico, foram determinadas as
energias tanto pela solucdo analitica quanto pelo método de diferencas finitas, a fim de avaliar
a precisdo deste ultimo. Os resultados comparativos estdao apresentados na Tabela 2.

Tabela 2: Energias do oscilador harmoénico analitico e numérica.

Estado Energia analitica Energia MDF
n=0 0.50 0.4997
n=1 1.50 1.4984
n=2 2.50 2.4959

Fonte: O proprio autor.
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CONSIDERACOES FINAIS

As simulacdes validaram a eficAicia do método das diferencas finitas, gerando
resultados que convergem de forma satisfatéria com os potenciais canonicos esperados,
confirmando sua adequacdo para analises preliminares. Para ampliar o rigor e a precisao,
futuras investigacGes devem focar na implementacdo de métodos numéricos de ordem
superior, como os algoritmos de Monte Carlo ou Runge-Kutta. Uma perspectiva imediata e de
relevancia é a aplicacdo desses métodos para a solucao precisa do potencial de Lennard-Jones,

visando a modelagem detalhada de sistemas interatomicos.
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