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RESUMO

A mecânica quântica é a área da Física que estuda o comportamento e as propriedades de partículas
subatômicas que compõem a matéria. Por isso, o movimento de partículas como o elétron não pode ser
descrito  com base nos princípios  da mecânica clássica.  Entre  as  diversas  aplicações  da mecânica
quântica,  destaca-se  a  modelagem de  sistemas  moleculares,  nos  quais  as  interações  entre  átomos
exigem uma descrição em termos de potenciais que reflitam sua natureza quântica. Nesse contexto, o
potencial  de Lennard-Jones se apresenta como uma ferramenta importante,  por estar  associado ao
comportamento de moléculas e ser amplamente utilizado em simulações de dinâmica molecular (DM).
Ele descreve a interação entre átomos e moléculas, permitindo, por exemplo, a modelagem das forças
intermoleculares entre átomos de argônio no estado líquido. Este projeto teve como objetivo inicial
aplicar o método de diferenças finitas (MDF) à equação de Schrödinger com o potencial de
Lennard-Jones, em conjunto com o formalismo da mecânica quântica supersimétrica, e comparar os
resultados com os obtidos via cálculo variacional. O MDF é uma abordagem numérica que permite
discretizar o espaço e o tempo, convertendo equações diferenciais em sistemas de equações algébricas
resolvíveis  computacionalmente.  Contudo,  a  aplicação  ao  potencial  de  Lennard-Jones  revelou-se
instável  numericamente.  Essa  limitação  levou  a  um  redirecionamento  do  estudo  para  potenciais
canônicos e de solução analítica conhecida, como o potencial degrau e o fenômeno de tunelamento
quântico. O modelo resultante demonstrou eficácia didática e estabeleceu uma base sólida para futuras
investigações em simulações numéricas na mecânica quântica.
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INTRODUÇÃO

De maneira geral, a mecânica quântica é a área da Física que estuda o comportamento

e as propriedades de partículas subatômicas que compõem a matéria. Com isso, o movimento

de  partículas  como  o  elétron  não  podem  ser  descritos  em  termos  da  mecânica  clássica

(ZEILMANN, 2024). Sendo assim, segundo Lobato (2024), entre 1926 e 1927, a partir do

comportamento ondulatório de uma partícula e a conservação de energia, Erwin Schrodinger

desenvolveu uma equação que descreve as ações dessa partícula, a equação de Schrodinger.

A característica  principal  da  equação  de  Schrödinger  é  o  potencial  utilizado.  Isso

significa que, em certos casos, a solução da equação não é trivial e só pode ser encontrada

através  de  métodos  numéricos,  dependendo  da  natureza  desse  potencial.  Um  método

numérico bastante utilizado para solucionar esse tipo de problema é o Método de Diferenças

Finitas (MDF). O MDF é uma abordagem numérica que permite  discretizar  o espaço e o

tempo,  transformando  a equação  diferencial  em um conjunto  de equações  algébricas  que

podem ser resolvidas computacionalmente (MONERAT, 2010).

Inicialmente, o intuito deste trabalho foi utilizar o método de diferenças finitas (MDF)

para solucionar a equação para o potencial de Lennard-Jones, já que o método aplicado a este

potencial aparentava não ser tão abordado na literatura. O potencial de Lennard-Jones está

associado ao comportamento de moléculas (OLIVEIRA, 2019). Ou seja, é bastante utilizado

em Dinâmica Molecular (DM), pois descreve a interação dos átomos e moléculas, com isso, o

potencial de Lennard-Jones pode ser aplicado para o cálculo de interações intermoleculares,

por exemplo, de átomos de argônio no estado líquido (COLUCI, s.d.).

Em  virtude  das  instabilidades  na  solução  para  o  potencial  de  Lennard-Jones,  a

pesquisa foi redirecionada para a análise de potenciais canônicos, cujas soluções são analíticas

e bem estabelecidas, como os casos do potencial degrau e do tunelamento quântico.
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REFERENCIAL TEÓRICO

Método de Diferenças Finitas (MDF)

O método de diferenças finitas (MDF) é utilizado para transformar equações diferenciais

ordinárias ou parciais, linear ou não linear, em um sistema de equações algébricas (PEREIRA

apud  RUGGIERO;  LOPES,  2020).  Assim,  as  incógnitas  das  equações  são  os  valores  da

função em cada ponto de um conjunto discreto, que estão igualmente espaçados (MONERAT,

2010). Ou seja, a solução de uma equação diferencial para um conjunto de valores (domínio)

nos leva ao conhecimento dos valores das variáveis estudadas, por isso o método consiste em

resolver as equações em pontos discretos (DA SILVA, 2011).

Figura 1: Representação da discretização da variável de integração.

Fonte: O próprio autor.

De acordo com Monerat (2010), pode-se obter as fórmulas de aproximação através da

série de Taylor:
𝑓(𝑥 ) = 𝑓(𝑥 ) + 𝑓'(𝑥 )ℎ +        1         2 3

(1)
𝑖+1 𝑖 𝑓''(𝑥 )ℎ

𝑖 𝑖 + 𝑂(ℎ )

em que ℎ é o espaçamento. Podemos considerar até o termo de primeira ordem e isolando, 

tem-se:
𝑓(𝑥  )−𝑓(𝑥 )

𝑓' (𝑥 ) =                𝑖+1                    𝑖     (2)
𝐴 𝑖 ℎ

que é a diferenciação ascendente. De maneira similar, pode-se escrever a diferenciação 

descendente

𝑓(𝑥
) = 𝑓(𝑥 ) − 𝑓'(𝑥 )ℎ +        1         2 3

(3)

o que leva a 𝑖−1 𝑖
𝑓''(𝑥 )ℎ

𝑖 𝑖 + 𝑂(ℎ )
𝑓(𝑥 )−𝑓(𝑥  )

𝑓' (𝑥 ) =                𝑖                   𝑖−1     (4)
𝐷 𝑖 ℎ

e, por fim, escrever a centrada subtraindo as duas séries de Taylor, 1 por 3, chega-se a
𝑓(𝑥  )−𝑓(𝑥  )

𝑓' (𝑥 ) =                𝑖+1                    𝑖−1     (5)
𝐶 𝑖 2ℎ



veja que foi possível definir a discretização para a diferenciação de primeira ordem. Na figura

2 é possível observar a representação geométrica das derivadas obtidas a partir do método de

diferenças finitas.

Figura 2: Representação geométrica da derivada. Em verde temos a derivada descendente

(retrógrada), em vermelho a centrada e, em azul, a ascendente (avançada).

Fonte: O próprio autor.

Método de diferenças finitas e equação de Schrodinger: sistema de equações algébricas

Na mecânica quântica, para descrever as característica de uma partícula, teremos que

determinar a função de onda Ψ(𝑥, 𝑡). Assim, segundo Griffiths (2011), para obter a função de

onda é necessário resolver a equação de Schrodinger 1D, que é dada por:
2 2

𝑖ħ        𝜕Ψ          =−        ħ           𝜕         Ψ          + 𝑉Ψ (6)
𝜕𝑡 2𝑚 2

𝜕𝑥

Em que pode-se escrever a parte independente do tempo da seguinte forma,
2 2

−        ħ         𝜕         ψ          + 𝑉ψ = 𝐸ψ (7)
2𝑚 2

𝜕𝑥

note que para determinar ψ(𝑥) iremos precisar do potencial 𝑉. A partir do cálculo variacional, 

a eq.(7) é escrita como,

𝐻ψ(𝑥) = 𝐸ψ(𝑥) (8)



=

2

A equação de Schrodinger independente do tempo tem uma derivada de segunda ordem, 

então, pode-se fazer o processo de diferenciação de segunda ordem
'' 𝑓(𝑥  )−2𝑓(𝑥 )+𝑓(𝑥  )

            𝑖+1                       𝑖                   𝑖−1     

𝐶 ℎ
(9)

Pode-se escrever a eq.(7), como

(10)

fazendo ħ = 1.

Segundo Pereira (2020), a equação de Schrodinger independente do tempo é um problema 

de valor de contorno (PVC), é fácil observar isso devido a dependência apenas na posição.
Adotando (𝑥 ) = ψ(𝑥 ) = 0, tem-se

0 𝑛+1

(11)

o que nos leva a escrever

em que

𝐹(𝑥) =        1           + 𝑉(𝑥)
𝑚ℎ

(12)

(13)

De acordo com Monerat (2010), a matriz.  𝑛 ×  𝑛 é real e simétrica, ou seja, diagonalizável. 

Assim, podemos garantir a existência de uma base de autoestados.

𝑓 2



METODOLOGIA

Para o desenvolvimento deste trabalho, foram seguidas as seguintes etapas:

1. Realização de uma revisão bibliográfica aprofundada.

2. Criação  de  um  modelo  computacional  para  a  equação  de  Schrödinger,  capaz  de

resolver diversos potenciais canônicos.

3. Comparação dos resultados computacionais com os dados e soluções já estabelecidos

na literatura.

Para construção do modelo computacional, foi utilizado a linguagem de programação

em  Python,  onde  foram  utilizadas  as  bibliotecas:  Numpy,  Scipy.linalg  e  Matplotlib

(MIRANDA, 2018). O código seguiu um padrão, definindo inicialmente as constantes, depois

o potencial e a construção da matriz Hamiltoniana. Como por exemplo, o código utilizado

para o potencial degrau:

>>> from scipy.linalg import eigh

>>> import numpy as np

>>> import matplotlib.pyplot as plt

# Constantes

>>> hbar = 1

>>> m = 1

>>> x0 = -25

>>> xNm1 = 25

>>> N = 1001 # mais pontos melhora precisão

# Passo espacial

>>> h = (xNm1 - x0) / (N - 1)

>>> x = np.linspace(x0, xNm1, N)

# Potencial degrau: V=0 se x<0, V=0.5 se x>=0

>>> V = np.array([0 if xi < 0 else 0.5 for xi in x])

# Hamiltoniano

H = np.zeros((N, N)) 

for i in range(N):

H[i, i] = V[i] + hbar**2/(m*h**2) # diagonal

if i > 0:

H[i, i-1] = -hbar**2/(2*m*h**2) 

if i < N-1:

H[i, i+1] = -hbar**2/(2*m*h**2)

# Resolver autovalores



# Normalizar
>>> psi = psi / np.sqrt(np.sum(np.abs(psi)**2) * h)

>>> print("Energias (primeiros 5):") 

for n in range(5):

print(f"n={n}: {energias[n]:.4f}")

# Plot

>>> plt.plot(x, psi, label=r"$\psi(x)$")

>>> plt.plot(x, V, label="V(x)", color="red")

>>> plt.xlabel("x")

>>> plt.ylabel("$\psi(x)$, V(x)")

>>> plt.title("Função de Onda - Potrau")

>>> plt.legend()

>>> plt.grid(True)

>>> plt.savefig("potencial_degrau.png", dpi=500)

>>> plt.show()

Para  os  outros  potenciais  canônicos  foi  utilizado  o  mesmo padrão  de  código,

modificando  apenas  o  potencial.  Na  tabela  1,  estão  descritos  os  potenciais  solucionados

juntamente com uma breve descrição de cada um. Os códigos completos podem ser acessados

em:

Tabela 1: Descrição breve de cada potencial simulado com método de diferenças finitas.

Potencial Descrição

Poço quadrado Infinito
Um  potencial  que  é  zero  dentro  de  uma
região  finita  e  infinito  fora  dela.  As
partículas ficam confinadas no poço.

Potencial Degrau
É um potencial que muda abruptamente de
valor em algum ponto do espaço. Utilizado
para  estudar  reflexão  e  transmissão  de
partículas em mecânica quântica.

Oscilador Harmônico
Potencial do tipo 𝑉(𝑥) =        1          𝑚  2 2

, cresce
2 ω 𝑥

quadraticamente com a distância do centro.

Fonte: O próprio autor.

Simulação dos resultados - MDF .pdf

>>> energias, autovetores = eigh(H)

# Pegar o estado fundamental

>>> psi = autovetores[:, 0]

https://drive.google.com/file/d/1APd1ss9ER-uChs-jfc4qLMvHP-0E54Bm/view?usp=drive_link


RESULTADOS E DISCUSSÃO

O primeiro potencial canônico simulado foi o poço quadrado infinito, geralmente o

ponto de partida no estudo da mecânica quântica. Esse potencial é definido por uma função

𝑉(𝑥) nula dentro de uma região de largura 𝐿. No caso considerado, adotou-se 𝐿 = 1. A partir

disso, foi possível simular o estado fundamental, bem como o primeiro e o segundo estados

excitados, como ilustrado na Figura 3.

Figura 3: Simulação do estado fundamental (azul), primeiro estado excitado (amarelo) e

segundo estado excitado (verde) do poço quadrado infinito.

Fonte: O próprio autor.

Já para o potencial degrau, defini-se 𝑉(𝑥) = 0 para 𝑥 < 0 e 𝑉(𝑥) = 0, 5 para 𝑥 > 0,

observe  a  figura  4.  Assim,  nota-se  que  a  função  de  onda  apresenta  um  comportamento

oscilatório na região 𝑥 < 0, onde o potencial é nulo, e passa a decair exponencialmente para

𝑥 > 0, região em que o potencial se torna constante e maior que a energia da partícula.

No contexto do potencial degrau, pode-se ainda considerar uma terceira região, em que

o potencial retorna a ser nulo. Nesse cenário, torna-se evidente o fenômeno do tunelamento

quântico,  caracterizado  pela  possibilidade  de  a  função de  onda atravessar  a  barreira  e  se

propagar novamente após ela.



Figura 4: Simulação do potencial degrau. Para 𝑛 = 0.

Fonte: O próprio autor.

Dessa forma, nesta simulação mantém-se as condições do potencial mostradas na Figura

4, sendo adicionada uma terceira região, conforme ilustrado na Figura 5. Ou seja, para

0 ≤ 𝑥 < 1, 5 o potencial é 𝑉(𝑥) = 0, 5, após essa barreira, 𝑉(𝑥) anula-se novamente.

Figura 5: Simulação do tunelamento quântico com adaptação no potencial degrau, tornando

uma barreira de potencial. Para 𝑛 = 4.

Fonte: O próprio autor.



Por fim, foi realizada a simulação do potencial do oscilador harmônico quântico, descrito

na Tabela 1. Na Figura 6, observa-se o comportamento característico das funções de onda,

evidenciando os três primeiros estados quânticos. Nota-se que as autofunções apresentam a

forma esperada,  com simetria  alternada  e  oscilações  crescentes  à  medida  que  aumenta  o

número quântico.

Figura 6: Simulação do potencial do oscilador harmônico quântico.

Fonte: O próprio autor.

Para aprofundar  a análise  do oscilador  harmônico quântico,  foram determinadas  as

energias tanto pela solução analítica quanto pelo método de diferenças finitas, a fim de avaliar

a precisão deste último. Os resultados comparativos estão apresentados na Tabela 2.

Tabela 2: Energias do oscilador harmônico analítico e numérica.

Estado Energia analítica Energia MDF

n=0 0.50 0.4997

n=1 1.50 1.4984

n=2 2.50 2.4959

Fonte: O próprio autor.



CONSIDERAÇÕES FINAIS

As  simulações  validaram  a  eficácia  do  método  das  diferenças  finitas,  gerando

resultados  que  convergem  de  forma  satisfatória  com  os  potenciais  canônicos  esperados,

confirmando sua adequação para análises preliminares.  Para ampliar  o rigor  e a precisão,

futuras  investigações  devem  focar  na  implementação  de  métodos  numéricos  de  ordem

superior, como os algoritmos de Monte Carlo ou Runge-Kutta. Uma perspectiva imediata e de

relevância é a aplicação desses métodos para a solução precisa do potencial de Lennard-Jones,

visando a modelagem detalhada de sistemas interatômicos.
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