

Dinâmica espaço-temporal da qualidade da água do rio Doce pósrompimento da barragem de Fundão

Winnícius Muniz dos Santos Sá 1 a Raquel Teles Rocha ^{2 a} Vítor Guilherme de Lucas e Souza 3 a Maria Luiza Guimarães Gomes 4 a Davi Antônio Rocha Meira Pires ^{5 a} Daiana Reis Pelegrine ^{6 a} Carlos Magno Oliveira Tadeu ^{7 a} Thiago Marques Salgueiro 8 a Vítor Gouveia Elian 9 a Estêvão Emerick de Oliveira Eller 10 a Bianca Loureiro Do Valle^{11 a} Renata Luiza Moreira^{12 a} Stella Pereira Pacheco ^{13 a} Maione Wittig Franco 14 a Luciana Pena Mello Brandão 15 a Lorena Torres Oporto^{16 a} Diego Guimarães Florêncio Pujoni ^{17 a} José Fernandes Bezerra-Neto 18 a

^aLaboratório de Limnologia, Ecotoxicologia e Ecologia Aquática (Limnea), Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brasil.

RESUMO

Mensurar a resistência e a resiliência de sistemas fluviais é um desafio, uma vez que são complexos, multivariados e com dinâmica espaço-temporal não linear e muitas vezes caótica. Ainda assim, diversas abordagens analíticas podem ser aplicadas para caracterizar o comportamento desses sistemas, desde que haja uma quantidade suficiente e consistente de dados coletados, cobrindo tanto a dimensão temporal quanto espacial. Neste contexto, o presente estudo avaliou as perturbações decorrentes do rompimento da barragem de Fundão, em Mariana (MG), e suas implicações na qualidade da água do rio Doce, considerando parâmetros físicos e químicos ao longo do tempo e do espaço. Para isso, utilizamos a base pública de monitoramento da qualidade da água disponibilizada pela Renova, no âmbito do Programa de Monitoramento Quali-Quantitativo Sistemático

(PMQQS), com amostragens com intervalos de um mês entre 2017 e 2024 em 29 pontos ao longo do rio Doce. Selecionamos variáveis potencialmente associadas à presença e mobilização dos rejeitos, sendo estas: Turbidez, sólidos totais dissolvidos (STS), metais dissolvidos (Al e Ba), metais totais (As, Pb, Cr, Fe, Mn, Ni e Zn) e avaliamos seus padrões longitudinais e sazonais separadamente para cada ano. Para isso, ajustamos modelos aditivos generalizados (GAMs) que permitiram modelar os gradientes ao longo do eixo longitudinal do rio, bem como os padrões sazonais de concentração. Embora a série temporal se inicie dois anos após o desastre, em 2017 foi possível observar concentrações elevadas de elementos-traço e particulados, com picos mais pronunciados durante o período chuvoso. A partir de 2019, notamos redução substancial nas concentrações da maioria das variáveis, que mantiveram níveis relativamente estáveis até 2024. Alguns indicadores não seguiram essa tendência, a exemplo da turbidez, que apresentou um incremento recente, sugerindo novos processos de remobilização ou aporte de sedimentos. Os resultados obtidos reforçam a importância de séries temporais de alta resolução e modelagem flexível para compreender a recuperação (ou persistência de impactos) em sistemas fluviais após eventos de grande magnitude. O trabalho fornece subsídios para monitoramento contínuo e gestão adaptativa da bacia do Rio Doce frente a perturbações associadas à mineração.

Palavras-chave: rio Doce, barragem de Fundão, qualidade da água, séries temporais, GAM.

Mestre em Aquicultura e Recursos Pesqueiros pela Universidade Federal de Santa Catarina - UFSC, winniciusmusansa@gmail.com;

²Graduanda do Curso de Ciências Biológicas da Universidade Federal de Minas Gerais - UFMG, raqueltrocha80@gmail.com;

³Graduando do Curso de Ciências Biológicas da Universidade Federal de Minas Gerais - UFMG, vitorguilherme639@gmail.com;

⁴Graduanda do Curso de Ciências Biológicas da Universidade Federal de Minas Gerais - UFMG, mariagomes.mlgg@gmail.com;

⁵Graduando do Curso de Ciências Biológicas da Universidade Federal de Minas Gerais - UFMG, darmp485@gmail.com;

⁶Doutoranda em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais - UFMG, daianareisp93@gmail.com;

⁷Doutorando em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais - UFMG, carlosmag61@gmail.com;

⁸Doutorando em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais - UFMG, thiagomsalgueiro@gmail.com;

⁹Mestre em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais - UFMG, <u>vitorg996@gmail.com</u>;

Mestre em Biologia Vegetal pela Universidade Federal de Minas Gerais - UFMG, estevao.e.eller@gmail.com;

¹¹Mestra em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais - UFMG, biançaloureirodovalle@gmail.com;

- ¹²Mestra em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais
- UFMG, rluiza87@gmail.com;
- ¹³Mestra em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais
- UFMG, stellapacheco2011@gmail.com;
- ¹⁴Doutora em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais
- UFMG, maione.franco@gmail.com;
- ¹⁵Doutora em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais
- UFMG, <u>lucianapmb@hotmail.com</u>;
- ¹⁶Doutora em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais
- UFMG, lorenatoporto@gmail.com;
- ¹⁷Doutor em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais
- UFMG, diegopujoni@gmail.com;
- ¹⁸ Professor Orientador: Doutor em Ecologia, Conservação e Manejo da vida Silvestre pela Universidade Federal de Minas Gerais UFMG, joseneto.ufmg@gmail.com.