

Diversidade de fungos endofíticos em *Dendropanax cuneatus* e seu potencial para conservação ambiental

Rafael Rios¹ Yumi Oki² Rafaela Pinto Coelho Santos³ Débora Cristina Souza⁴ Geraldo Wilson Fernandes⁵

RESUMO

Após o rompimento de Fundão, considerado o maior desastre de mineração no Brasil, diversas medidas têm sido buscadas para viabilizar a conservação de espécies e a recuperação de áreas degradadas. Entre as alternativas mais promissoras está o uso de fungos endofíticos, microrganismos que vivem no interior dos tecidos vegetais sem causar danos, produzindo enzimas de degradação, hormônios de crescimento e substâncias secundárias de defesa. Neste trabalho, foi avaliada a comunidade de fungos endofíticos da espécie nativa Dendropanax cuneatus (Araliaceae), encontrada na Bacia do Rio Doce, e seu potencial para auxiliar na sobrevivência, estabelecimento e desenvolvimento vegetal. Foram coletados três ramos de cada indivíduo (n=10) em uma área ripária preservada em Mariana-MG. No laboratório, três folhas de cada ramo foram lavadas, esterilizadas superficialmente, cortadas em fragmentos e inseridas em meio de cultura batata-dextrose-água. Os fungos emergidos durante 21 dias foram isolados e incubados a 25 °C. A identificação taxonômica está sendo realizada por microcultivo para indução de esporulação. Posteriormente, será realizada a identificação molecular e a bioprospecção, com foco no estabelecimento e desenvolvimento vegetal. Até o momento, foram identificadas cerca de 66 morfoespécies a partir de 79 isolados de fungos. Estudos indicam que alguns desses fungos são do gênero Alternaria, Phomopsis e Fusarium, cujas espécies podem produzir enzimas, como celulases, e hormônios vegetais, como auxinas e giberelinas. Os resultados sugerem que o D. cuneatus hospeda uma comunidade diversa de fungos endofíticos com potencial para promover o estabelecimento e desenvolvimento vegetal. Esses microrganismos podem desempenhar papel importante em estratégias de conservação e recuperação de áreas degradadas, oferecendo alternativas promissoras para mitigar os impactos de desastres ambientais como o rompimento de Fundão. Agradecimentos: FAPEMIG (APQ-00031-19), Projeto Doce Flora (Proc 180/2024).

Palavras-chave: Araliaceae, Bacia do Rio Doce, Conservação ambiental, Microbiota endofítica, Simbiose

¹Aluno de graduação, Biomedicina, Universidade Federal de Minas Gerais (UFMG). E-mail: rafaelrios2009@yahoo.com.br;

²Pós-Doutorado Universidade Federal de Minas Gerais, (UFMG), Brasil. E-mail: yumiokibiologia@gmail.com;

³Pós-doutorado Universidade Federal de Minas Gerais, (UFMG), Brasil, E-mail:

⁴ Aluna de graduação, Ciências Biológicas, Universidade federal de Minas Gerais (UFMG), Brasil, Email : dboracristine9@gmail.com

⁵ Professor orientador: Geraldo Wilson Fernandes, Doutor em Ecologia, Professor Titular da Universidade Federal de Minas Gerais (UFMG), Brasil. E-mail: gw.fernandes@gmail.com.