

Aplicação do método de água livre para estimar o metabolismo ecossistêmico em sistemas lóticos tropicais

Ludmila Silva Brighenti ¹

Carlos Magno Oliveira Tadeu ²

André Megali Amado ³

Cristiane Freitas de Azevedo Barros ⁴

Diego Florêncio Guimarães Pujoni ⁵

Layla Mayer Fonseca ⁶

Lorena Torres Oporto ⁷

Stella Pereira Pacheco ⁸

José Fernandes Bezerra-Neto 9

RESUMO

A manutenção dos serviços ecossistêmicos depende do equilíbrio e funcionamento dos ecossistemas, sendo os ambientes aquáticos continentais reconhecidos como hotspots no processamento de carbono, apesar de sua pequena cobertura territorial. O metabolismo ecossistêmico, estimado pela produção primária bruta (PPB), respiração do ecossistema (RE) e produção líquida do ecossistema (PLE = PPB -RE), regula a ciclagem de carbono e energia nos sistemas lóticos. Neste estudo, avaliamos o metabolismo do rio Doce e de um trecho do rio Santo Antônio (afluente) por meio do método de água livre, que utiliza variações no oxigênio dissolvido como proxy para as taxas de fotossíntese e respiração. Foram instalados sensores de oxigênio, temperatura, luz e pressão barométrica em estruturas fixas, posicionadas em seis a oito pontos de monitoramento durante campanhas representativas das estações seca (setembro/2023 e setembro/2024) e chuvosa (março/2024). Os sensores registraram dados a cada 10 minutos por pelo menos 72 horas, e medições de vazão (ADCP RiverSurveyor M9) e coletas de água para análises físicoquímicas e biológicas complementaram a instrumentação. As taxas metabólicas foram estimadas pelo pacote LakeMetabolizer (software R), com cálculos diários de PPB, RE e PLE, incorporando modelos de reaeração baseados em parâmetros hidráulicos e conversão k600→kO2, com seleção de modelo por desempenho. Os resultados indicaram maior PPB nos pontos a montante dos reservatórios Risoleta Neves (MET 1) e de Aimorés (MET6) durante as campanhas de seca. O ponto MET6 foi também o ponto com as maiores densidades do fitoplâncton. Na estação chuvosa, os valores de PPB foram próximos de zero em todos os trechos. Em todas as campanhas, a PLE foi negativa, evidenciando que a respiração excedeu a produção primária, caracterizando os trechos como heterotróficos. As estruturas de monitoramento

¹ Professora: doutora, UEMG - Universidade do Estado de Minas Gerais, unidade Divinópolis - MG, https://linear.google.com;

² Doutorando em Ecologia, Conservação e Manejo da Vida Silvestre, UFMG - Universidade Federal de Minas Gerais - MG, <u>carlosmag61@gmail.com</u>;

³ Professor: doutor, UFJF – Universidade Federal de Juiz de Fora - MG, andre.amado@gmail.com;

⁴ Professora: doutora, UEMG - Universidade do Estado de Minas Gerais, unidade Ibirité - MG, crisfabarros@gmail.com;

⁵ Doutor em Ecologia, Conservação e Manejo da Vida Silvestre, UFMG - Universidade Federal de Minas Gerais - MG, <u>diegopujoni@gmail.com</u>;

⁶ Doutoranda em Biodiversidade e Conservação da Natureza, UFJF – Universidade Federal de Juiz de Fora - MG, <u>layla.mayer@estudante.ufjf.br</u>;

Doutora em Ecologia, Conservação e Manejo da Vida Silvestre, UFMG - Universidade Federal de Minas Gerais - MG, <u>lorenatoporto@gmail.com</u>;

⁸ Mestra em Ecologia, Conservação e Manejo da Vida Silvestre, UFMG - Universidade Federal de Minas Gerais - MG, <u>stellapacheco2011@gmail.com</u>;

Professor: doutor, UFMG – Universidade Federal de Minas Gerais - MG, joseneto.ufmg@gmail.com.

mostraram-se eficazes para medições contínuas e seguras. Atualmente, novos modelos de cálculo da reaeração, incluindo abordagens que incorporam vazão e modelagem inversa, estão sendo testados para aprimorar a acurácia das estimativas metabólicas, especialmente no período chuvoso. Esses resultados reforçam o papel dos rios como fontes líquidas de carbono para a atmosfera e destacam a importância do monitoramento integrado para compreender a variabilidade espaço-temporal do metabolismo em grandes bacias hidrográficas.

Palavras-chave: metabolismo aquático, produção primária bruta, respiração ecossistêmica, balanço de carbono.