

CICATRIZES QUE NÃO CICATRIZAM: IMPACTOS DOS REJEITOS DE MINERAÇÃO A DINÂMICA DE DECOMPOSIÇÃO DAS ESPÉCIES DA BACIA DO RIO DOCE

Quézia Emanuelle Ferreira Rocha 1

Luiza Batista Martins de Sá²

Rebeca Ferreira Reis³

João Carlos Gomes Figueiredo ⁴

Yule Roberta Ferreira Nunes 5

Wallisson Kenedy Siqueira ⁶

Renata Maia 7

Yumi Oki 8

Milton Barbosa 9

Débora Lima Santos 10

Flávio Mota 11

Daniel Negreiros 12

Letícia Ramos ¹³

Marcos Paulo dos Santos 14

Bruce Dickinson 15

Lucas Rodrigues de Souza 16

Lucienir Pains Duarte 17

Maria das Dores Magalhães Veloso 18

rana das Dores iviagamaes veidso

Jennifer Powers 19

Geraldo Wilson Fernandes 20

O rompimento da barragem de Fundão, em 2015, liberou cerca de 50 milhões de m³ de rejeitos de minério de ferro na bacia hidrográfica do Rio Doce, alterando severamente as propriedades do solo e a vegetação ripária. Oito anos após o desastre, este estudo avaliou como os rejeitos de mineração afetam a decomposição da serapilheira, processo essencial para a ciclagem de nutrientes e a regeneração florestal. A pesquisa foi realizada em cinco regiões da bacia (Mariana, Rio Casca, Ipatinga, Conselheiro Pena e Aimorés), abrangendo as estações seca e chuvosa e comparando solos de referência e solos impactados. Foram aplicadas duas abordagens: o índice padronizado Tea Bag Index (TBI), para estimar a taxa de decomposição (k) e o fator de estabilização (S), e uma versão modificada do TBI, que avaliou a decomposição da serapilheira de três

espécies nativas por região e da gramínea invasora Urochloa decumbens. Os resultados mostraram que o TBI padronizado não apresentou diferenças significativas entre áreas de referência e impactadas, indicando baixa sensibilidade do método à contaminação. Em contrapartida, a decomposição da serapilheira nativa foi altamente influenciada pelas condições edáficas alteradas. Em Mariana, os rejeitos reduziram fortemente a decomposição de Piptadenia gonoacantha e Schinus terebinthifolius (55% e 63% menores, respectivamente). A sazonalidade aumentou os valores de k de S. terebinthifolius (24%) e Eugenia florida (66%) na estação seca. Em Rio Casca, Guarea macrophylla decompôs 54% mais rápido na seca, enquanto Sloanea guianensis reduziu 49% na chuva. Em Ipatinga, E. florida manteve forte resposta sazonal (57% maior na seca) e U. decumbens apresentou menor decomposição em solos impactados. Em Conselheiro Pena, Astronium urundeuva teve k consistentemente menor em áreas contaminadas, enquanto *U. decumbens* aumentou sua decomposição. Em Aimorés, observou-se leve incremento (9%) na decomposição da gramínea durante a seca. De modo geral, U. decumbens manteve ou acelerou sua decomposição em solos impactados, sugerindo que as condições alteradas favorecem sua expansão. Conclui-se que o TBI padronizado subestima os efeitos da contaminação, enquanto a decomposição espécie-específica revela respostas ecológicas críticas. Para a restauração de florestas ripárias em áreas pós-mineração, recomenda-se combinar espécies nativas com diferentes estratégias de decomposição, promovendo o restabelecimento da ciclagem de nutrientes e o controle de espécies invasoras.

Palavras-chave: Bacia do Rio Doce, Contaminação do solo, Decomposição da serapilheira, Espécies nativas e invasoras, Restauração ecológica

Agradecimentos: APQ 00031 - FAPEMIG

¹ Graduada, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais <u>queziaferreirabio@gmail.com</u>

² Graduanda, Universidade Federal de Minas Gerais - MG <u>sa.luiza@yahoo.com</u>

- ⁴ Doutor, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, <u>icgfigueiredo16@gmail.com</u>
- ⁵ Professora Doutora, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, vule rfinunes@gmail.com
- ⁶ Doutor, Departamento de Biologia Geral, Universidade Estadual de Montes Claros kenedy.siqueira@gmail.com
- ⁷ Doutora, Biodiversity and Earth Observation, Environmental Change Institute, School of Geography and the Environment, University of Oxford Oxford renataapmaia@gmail.com
- ⁸ Doutora, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, <u>yumiokibiologia@gmail.com</u>
- ⁹ Doutor, Biodiversity and Earth Observation, Environmental Change Institute, School of Geography and the Environment, University of Oxford Oxford milton.barbosa@ouce.ox.ac.uk
- ¹⁰ Doutora, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, desantos@uesc.br
- ¹¹ Doutor, Instituto Chico Mendes de Biodiversidade, ICMBio <u>flaviomoc@gmail.com</u>
- ¹² Doutor, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, negreiros eco@gmail.com
- ¹³ Doutora, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais <u>leticiaramos.bio@gmail.com</u>
- ¹⁴ Mestrando, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, marcospaulods32@gmail.com
- ¹⁵Mestrando, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, <u>brucedickinson.bio@gmail.com</u>
- Mestre, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, <u>lucas rod souza@hotmail.com</u>
- ¹⁷ Doutora, Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais,
- ¹⁸ Doutora, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, doraveloso13@gmail.com
- ¹⁹ Doutora, Departments of Ecology, Evolution & Behavior and Plant & Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- ²⁰ Professor Doutor, Knowledge Center for Biodiversity, 31270-901, Belo Horizonte, Brazil., gw fernandes@gmail.com

³ Graduanda, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais rebeca ferreira reis bio@gmail.com