

TECNOLOGIAS DIGITAIS NO ENSINO DE GEODIVERSIDADE: UMA ANÁLISE DO POTENCIAL PEDAGÓGICO DAS FERRAMENTAS TECNOLÓGICAS

Rones Dias de Abreu ¹ Aichely Rodrigues da Silva ²

RESUMO

A geodiversidade refere-se à variedade de elementos geológicos, geomorfológicos, pedológicos e hidrológicos que compõem a superfície terrestre e suas interações. Esse conceito engloba rochas, minerais, fósseis, solos, formas de relevo, processos geológicos e recursos hídricos. O ensino da geodiversidade na educação básica é essencial para conectar os estudantes ao seu ambiente, despertando o interesse pelas ciências da Terra e incentivando a conservação ambiental. Dessa forma, contribui para a formação de cidadãos conscientes, capazes de desenvolver estratégias e ações para mitigar problemas ambientais. Esta pesquisa teve como objetivo analisar o uso de tecnologias, dentre as quais pode-se citar o Storyboard That, Canva, Google Forms e Mentimeter como ferramenta para o ensino da geodiversidade nas escolas do Maranhão, tanto para auxiliar professores quanto para o desenvolvimento dos alunos. O estudo foi desenvolvido por meio de uma revisão bibliográfica, fundamentada em uma abordagem qualitativa, de caráter exploratório visando aprofundar a compreensão sobre o tema. Além disso, foram avaliadas as ferramentas disponíveis na internet sobre a temática, seguindo a metodologia de Vasconcelos e Souto (2003) e Badzinski e Hermel (2015). A análise considerou aspectos como temáticas que poderão ser abordadas, qualidade do texto e das imagens, linguagem dos conteúdos, bem como a funcionalidade da ferramenta (se serve como material de consulta, simulador, vídeo ou animação). Os resultados apontam a importância das ferramentas tecnológicas para o ensino da geodiversidade do Maranhão, elas são fundamentais para tornar o aprendizado mais dinâmico, interativo e acessível. As ferramentas analisadas demonstraram que podem contribuir para a compreensão do tema, potencializar o pensamento espacial crítico dos alunos e favorecer uma aprendizagem ativa e significativa, reforçando a importância das tecnologias digitais no ensino das geociências.

INTRODUÇÃO

A geodiversidade, conceito relativamente recente no campo das geociências, refere-se à variedade de elementos geológicos, geomorfológicos, pedológicos e hidrológicos da superfície terrestre e suas inter-relações (Gray, 2008). O Serviço Geológico do Brasil SGB/CPRM a define como a natureza abiótica constituída por uma variedade de ambientes, fenômenos e processos geológicos que dão origem a paisagens, rochas, minerais, águas, solos, fósseis e outros depósitos superficiais que propiciam o desenvolvimento da vida na Terra,

¹ Graduando em Geografia pela Universidade Estadual da Região Tocantina do Maranhão (UEMASUL) pelo Programa Caminhos do Sertão. Bolsista de Projeto de Inovação (FAPEMA), rones.abreu@uemasul.edu.br;

² Doutora em Geografia pela Universidade Federal de Santa Catarina. Professora Adjunta I da Universidade Estadual da Região Tocantina do Maranhão (UEMASUL). E-mail: aichely.rodrigues@uemasul.edu.br.

tendo como valores intrínsecos o cultural, o estético, o econômico, o científico, o educativo e o turístico. Sua abordagem no ambiente escolar, especialmente na educação básica, é fundamental para o desenvolvimento do pensamento crítico e ambiental dos estudantes, além de possibilitar a compreensão da complexidade do espaço geográfico.

Em concordância e reforçando o que foi apontado anteriormente, Brilha *et al.* (2009), enfatizam que a geodiversidade compreende a diversidade de ambientes geológicos, fenômenos e processos dinâmicos que originam paisagens, rochas, minerais, fósseis, solos e outros depósitos superficiais, os quais constituem a base física que sustenta a vida na Terra. A literatura mostra que geodiversidade não é só o que vemos no relevo ou no solo. Ela tem uma função muito mais ampla e valiosa para a sociedade, e por isso seu ensino é tão importante especialmente quando conectado com ferramentas digitais que podem ajudar os alunos a compreender tudo isso.

Para Cavalcanti (1999) e Fialho (2008), o ensino de conteúdos físico-naturais, como a geodiversidade, ainda é marcado pela fragmentação e pela ausência de abordagens contextualizadas. Essa lacuna está diretamente relacionada à formação docente e ao uso excessivo de materiais didáticos que não partem da realidade dos alunos (Morais, 2014). Soma-se a isso a diminuição da carga horária das disciplinas de Geografia com a reforma do Novo Ensino Médio (Lei nº 13.415/2017), o que dificulta ainda mais a consolidação de práticas significativas no ensino de geociências. Com isso, regiões periféricas e com uma população de perfil socioeconômico vulnerável como o Estado do Maranhão dentre outros, sofrem grandes prejuízos na educação, ainda mais quando há a união desses fatores como a corrupção, frente aos desafios históricos e estruturais da educação pública no estado.

Nesse cenário, o uso de Tecnologias Digitais da Informação e Comunicação (TDICs) tem se mostrado uma alternativa metodológica relevante, contribuindo para tornar o ensino mais dinâmico, interativo e próximo da realidade dos estudantes. Segundo Nóvoa (2022), é necessário repensar a escola frente às transformações digitais em curso. Ferramentas como *Google Earth*, Canva, Mentimeter e *Storyboard That* possibilitam novas estratégias didáticas, integrando elementos do espaço físico e digital (Moran, 2015) e estimulando práticas pedagógicas que dialogam com o cotidiano dos alunos (Silva; Lima, 2020; Rigo, 2023).

Diante disso, a presente pesquisa tem como objetivo analisar o potencial pedagógico de ferramentas digitais no ensino da geodiversidade, a partir de uma revisão bibliográfica, com abordagem qualitativa e caráter exploratório. O estudo baseia-se nos critérios de avaliação de recursos educacionais digitais propostos por Vasconcelos e Souto (2003) e adaptados por Badzinski e Hermel (2015), buscando compreender de que forma essas

tecnologias podem ser aplicadas no contexto escolar. Com isso, pretende-se contribuir para a valorização da Geografia física e para a construção de práticas pedagógicas alinhadas aos desafios educacionais do século XXI.

METODOLOGIA

A presente pesquisa é de natureza qualitativa, com abordagem indutiva e caráter exploratório, centrada em uma revisão bibliográfica que buscou compreender o uso e o potencial pedagógico de ferramentas digitais no ensino de geodiversidade na educação básica, com ênfase no contexto das escolas maranhenses (Figura 1).

Metodologia da Pesquisa - Ensino de Geodiversidade com TDICs Natureza: Qualitativa Abordagem: Indutiva Tipo de Pesquisa Caráter: Exploratória Revisão bibliográfica Procedimento Foco: uso de tecnologias digitais no ensino da geodiversidade. Storyboard That Canva Ferramentas Google Forms Analisadas Mentimeter Critérios de Baseados em Vasconcelos & Souto (2003) e Badzinski & Hermel (2015): análise Abrangência temática Qualidade textual e visual Linguagem acessível ★ Funcionalidade pedagógica Elaboração de Quadro Organização dos comparativo (Quadro 1) dados

Figura 1- Fluxograma da metodologia da pesquisa

Fonte: Elaborado pelo autor, 2025.

O método indutivo, conforme discutido por Diniz e Silva (2018), parte da análise de elementos particulares, visando à construção de generalizações a partir da observação e análise de dados específicos. Essa abordagem mostrou-se adequada ao objetivo deste estudo, que buscou compreender como as tecnologias digitais podem ser utilizadas de forma significativa para o ensino dos conteúdos físico-naturais.

A coleta de dados foi realizada por meio de levantamento e leitura crítica de materiais acadêmicos (livros, artigos e documentos oficiais), além da seleção e análise de quatro plataformas digitais acessíveis e utilizadas no ambiente escolar: *Storyboard That*, Canva, *Google Forms* e Mentimeter. A escolha baseou-se em critérios como usabilidade, acessibilidade, recursos interativos e potencial de aplicação didática.

A análise seguiu os parâmetros metodológicos de Vasconcelos e Souto (2003) e Badzinski e Hermel (2015), considerando: abrangência temática; qualidade textual e visual; linguagem acessível; e funcionalidade (como material de consulta, simulador, animação ou ferramenta interativa). Os dados foram organizados no Quadro 1, sintetizando as principais características de cada ferramenta em relação aos critérios analisados.

REFERENCIAL TEÓRICO

O ensino de Geografia na educação básica tem sido marcado por abordagens fragmentadas dos conteúdos físico-naturais, dificultando a compreensão sistêmica da relação entre sociedade e natureza. Segundo Fialho (2008), essa fragmentação reflete tanto a formação dos professores quanto a estrutura dos livros didáticos, que não estimulam o raciocínio geográfico com base na realidade vivida pelos estudantes. Morais (2014) reforça que os conteúdos ligados à natureza, como relevo, clima e solos, raramente partem de problemáticas contextualizadas, o que compromete o desenvolvimento do pensamento crítico. Além disso, com a implementação do Novo Ensino Médio (Lei nº 13.415/2017), a disciplina de Geografia perdeu espaço curricular, o que agrava a dificuldade em abordar com profundidade conteúdos como a geodiversidade. Essa realidade revela a necessidade de buscar metodologias que aproximem os alunos da realidade física do seu território e fortaleçam o papel da Geografia no ensino básico.

Barbosa, Listo e Bispo (2022) apontam que o uso de ferramentas digitais pode favorecer significativamente o processo de ensino-aprendizagem em Geografia, contribuindo para ampliar a consciência crítica dos estudantes e tornando as aulas mais atrativas e envolventes. Ambos autores reforçam que o uso de ferramentas digitais não é apenas uma questão de modernização, mas uma estratégia pedagógica que transforma o aprendizado.

Para eles, essas tecnologias ampliam o envolvimento dos estudantes e despertam sua consciência crítica, ou seja, ajudam o aluno a pensar sobre o espaço geográfico de forma ativa, participativa e reflexiva. A presença das tecnologias no ensino de Geografia, especialmente nos temas ligados à geodiversidade, permite visualizar, interagir e compreender de maneira mais eficaz os fenômenos naturais e suas relações com a sociedade.

A incorporação das Tecnologias Digitais da Informação e Comunicação (TDICs) ao processo pedagógico surge como uma alternativa para tornar o ensino mais significativo. Para Moran (2015), vivemos em uma "sala de aula ampliada", em que o físico e o digital se mesclam, criando oportunidades de aprendizagem mais dinâmicas.

Nóvoa (2022) defende que a formação docente deve ir além da transmissão de conteúdos e incorporar dimensões colaborativas e reflexivas, essenciais para o uso crítico das tecnologias em sala de aula. Da mesma forma, autores como Führ e Haubenthal (2019) apontam que a Educação 4.0 exige o desenvolvimento de novas competências que permitam aos professores orquestrar os recursos digitais em favor da construção do conhecimento.

Especificamente no ensino da geodiversidade, ferramentas como o Google Earth têm se mostrado úteis para a visualização e interpretação de elementos geológicos e geomorfológicos (Silva; Lima, 2020). A geotecnologia, nesse sentido, contribui para uma aprendizagem mais concreta, lúdica e crítica (Rigo, 2023), ao mesmo tempo em que estimula a análise espacial e a valorização do território local.

RESULTADOS E DISCUSSÃO

A análise das plataformas digitais permitiu identificar o potencial pedagógico de cada ferramenta para o ensino da geodiversidade. A seguir, apresenta-se o Quadro 1, que sintetiza os principais resultados da análise das ferramentas digitais.

Quadro 1 – Comparativo entre ferramentas digitais analisadas

Ferramenta	Aplicações Didáticas	Vantagens	Limitações
Storyboard That	Criação de narrativas visuais sobre processos geológicos	Estimula criatividade e raciocínio sequencial	Versão gratuita com limitações
Canva	Produção de infográficos e materiais sobre relevo e solos	Interface intuitiva; visualmente atrativo	Requer conexão constante à internet
Google Forms	Questionários, quizzes e sondagens	Rápido, interativo, útil para diagnóstico	Baixa exploração visual
Mentimeter	Enquetes e votações ao vivo sobre temas geocientíficos	Favorece participação e feedback em tempo real	Limitação de recursos gratuitos

Fonte: Elaborado pelo autor, 2025.

Essas ferramentas contribuem para romper com a fragmentação do ensino tradicional da Geografia física (Cavalcanti, 1999; Fialho, 2008;), promovendo práticas integradas, contextualizadas e engajadoras. No contexto das escolas maranhenses, carentes de recursos didáticos físicos, elas representam soluções pedagógicas viáveis e criativas.

CONSIDERAÇÕES FINAIS

A pesquisa permitiu compreender o potencial pedagógico das tecnologias digitais no ensino da geodiversidade. As plataformas analisadas se mostraram eficazes para promover uma aprendizagem ativa, visual e interativa, ampliando o repertório didático dos professores e estimulando o engajamento dos estudantes com os conteúdos físico-naturais. Além de acessíveis e versáteis, essas ferramentas se alinham aos princípios da Educação 4.0, aproximando os alunos da realidade digital e das práticas científicas. No entanto, sua efetividade está condicionada à formação continuada dos docentes, ao acesso à infraestrutura tecnológica e à valorização da Geografia física nos currículos escolares.

Conclui-se que as tecnologias digitais, quando utilizadas com intencionalidade pedagógica, podem contribuir significativamente para a formação de sujeitos críticos e conscientes, capazes de compreender e transformar o espaço em que vivem. Recomenda-se, para estudos futuros, a aplicação prática dessas ferramentas com professores e estudantes em sala de aula, consolidando o uso das tecnologias como aliadas na valorização da geodiversidade e na formação de sujeitos críticos e conscientes.

Palavras-chave: Ensino, Geodiversidade, Tecnologias Digitais.

REFERÊNCIAS

BADZINSKI, M.; HERMEL, E. Ferramentas digitais no ensino de geografia física: potencialidades e desafios. **Revista Geographia Opportuno Tempore**, São Paulo, v. 1, n. 3, p. 54–65, 2015.

BARBOSA, B.; LISTO, F. Luiz R.; BISPO, C. O. O Google Earth como ferramenta didática para o ensino dos parâmetros fisiogeográficos: aplicação na Chapada do Araripe, Nordeste do Brasil. **PESQUISAR–Revista de Estudos e Pesquisas em Ensino de Geografia**, v. 9, n. 18, p. 24-39, 2022.

BRASIL. Lei nº 13.415, de 16 de fevereiro de 2017. Altera as Leis nos 9.394, de 20 de dezembro de 1996, que estabelece as diretrizes e bases da educação nacional, e 11.494, de 20 de junho 2007, que regulamenta o Fundo de Manutenção e Desenvolvimento da Educação Básica e de Valorização dos Profissionais da Educação, a Consolidação das Leis do Trabalho CLT, aprovada pelo Decreto-Lei no 5.452, de 10 de maio de 1943, e o Decreto-Lei no 236, de 28 de fevereiro de 1967; revoga a Lei no 11.161, de 5 de agosto de 2005; e institui a Política de Fomento à Implementação de Escolas de Ensino Médio em Tempo Integral. Portal da Legislação, Brasília, 2017. Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/lei/l13415.htm. Acesso em: 30 de jun. 2025.

BRILHA, J. B. R. Importância dos Geoparques no Ensino e Divulgação das Geociências. **Geol. USP**, Publ. espec., v. 5, p. 27-33, 2009.

CAVALCANTI, L.S **Propostas curriculares de Geografia no ensino:** algumas referências de análise. Terra Livre, São Paulo, v. 14, p. 111-128, 1999.

DINIZ, M. T. M.; SILVA, S. D. R. O Método Indutivo e a pesquisa em Geografia: aplicação no mapeamento de unidades da Paisagem. **Caderno de Geografia**, v. 28, p. 731-745, 2018.

FIALHO, E. S. A Geografia Escolar e as questões ambientais. **Revista Ponto de Vista**, v. 5, p. 47-63, 2008.

FÜHR, R. C.; HAUBENTHAL, W. R. Educação 4.0 e seus impactos no Século XXI. In. **Educação no Século XXI** - Volume 36 3 Tecnologia/Organização: Editora Poisson, Belo Horizonte - MG: Poisson, 2019. p.61-66.

GRAY, M. Geodiversity: a new paradigm for valuing and conserving geoheritage. **Series Geocience Canada**, v.35, n.2, p.51-59. 2008.

MORAIS, E. M. B. O ensino das temáticas físico-naturais na geografia escolar. 2011. Tese (Doutorado) — Departamento de Geografia, FFLCH, Universidade de São Paulo, São Paulo, 2011.

MORAN, J. M. Novas Tecnologias e medicação pedagógica. Campinha, SP: Papirus, 2015.

NÓVOA, A. **Escolas e professores**: proteger, transformar, valorizar. Salvador: SEC/IAT, 2022.

RIGO, C. M. Material didático para capacitação de professores do ensino básico no uso da ferramenta Google Earth Pro. TCC (Graduação) — Comissão de Graduação do curso de Licenciatura em Ciências da Natureza, do Instituto de Geociências da Universidade Federal do Rio Grande do Sul, 2023.

SILVA, C. R. da. **Geodiversidade do Brasil**: conhecer o passado, para entender o presente e prever o futuro / editor: Cassio Roberto da Silva. Rio de Janeiro: SGB/CPRM, 2008.

SILVA, Í. R. F.; LIMA, R. F. P. A aplicação do software Google Earth Pro como possibilidade de geotecnologia para o ensino de cartografia escolar em Geografia. **Diversitas Journal**. Santana do Ipanema, v.5, n.1, p.392-408, 2020. DOI: https://doi.org/10.17648/diversitas-journal-v5i1-1068.

VASCONCELOS, M. J.; SOUTO, H. S. Critérios para avaliação de softwares educativos. **Revista Brasileira de Informática na Educação**, Porto Alegre, n. 14, p. 45–56, 2003.