Contato@sinprovs.com.br WWW.SINPROVS.COM.BR VESTE (ES) 3322-3222

QUALIDADE PÓS-COLHEITA DE Citrus deliciosa Tenore SUBMETIDA A INFORMAZENAMENTO REFRIGERADO.

POSTHARVEST QUALITY OF Citrus deliciosa Tenore UNDER COLD STORAGE

Araújo, AKO; Diógenes, MFS¹; Reges, KSL¹; De Oliveira, LM¹; Mendonça, V¹.

¹Universidade Federal Rural do Semi-Árido, Departamento de Fitotecnia, CEP 59.625-900, Mossoró-RN.

Brasil. Andrezza klyvia@hotmail.com mariafgenia@hotmail.com; kei.v@hotmail.com lulut@hotmail.com; vander@ufersa.edu

RESUMO

O Brasil possui a maior área plantada e a maior produção de frutas cítricas do mundo. Tangerinas e mexericas são frutas consumidas basicamente in natura, com parte da produção destinada a industrialização. Garantir a qualidade pós colheita por um maior intervalo de tempo, dentro do possível, até a chegada ao consumidor final, é indispensável para minimizar as perdas e aumentar a quantidade de alimento para a população. O objetivo desta pesquisa foi avaliar a qualidade física do armazenamento refrigerado na pós colheita de frutos de mexerica-do-rio, cultivados em Mossoró-RN, no pomar da Universidade Federal Rural do Semi-Árido. Foram colhidos frutos maduros, apresentando duas diferentes colorações de cacas: predominantemente verde (P.V.) e predominantemente amarela (P.A.). Cinco amostras foram submetidas a diferentes tempos de armazenamento: 0, 12, 22, 32 e 40 dias após a colheita. Os frutos foram armazenados numa temperatura de 6 °C (variação de ±6,7 °C) e umidade relativa de 85% (variação de ±10%). As variáveis analisadas foram: massa dos frutos, comprimento longitudinal, comprimento transversal e espessura da casca. Os resultados mostraram que os frutos com coloração amarelo obteve caracteriscas fisicas de boa qualidade com destague para a casca fina e seu formato, em consumo *in natura*. Porem, foi observado que aos 40 dias de armazenamento os frutos alcançaram sua maior degradação em todas as variáveis análisadas.

PALAVRAS-CHAVE: Fruticultura; Mexerica; Características físicas.

INTRODUÇÃO

O Brasil possui a maior área plantada e a maior produção de frutas cítricas do mundo. (IBGE, no de 2016). Sendo as principais variedades de citros exploradas são: piralima, laranja-lima, baianinha, barão, pêra, abacaxi, Valência, Natal, mexerica-do-rio, tangerina-cravo, poncã e Murcott. Quanto aos limões: galego, Taiti e siciliano (SIMÃO, 1998). Tangerinas e mexericas são frutas consumidas basicamente *in natura*, com parte da produção destinada a industrialização. Boas características tais como, coloração, tamanho, sabor, aroma, aparência externa, ausência de sementes, facilidade de descascar bom estado fitossanitário são desejáveis para a comercialização. (OLIVEIRA; SCIVITTARO, 2011). O consumo de frutas cítricas de mesa ainda é baixo, mas há uma tendência geral de aumento do consumo de frutas frescas. Neste sentido, garantir que a

WWW.SINPROVS.COM.BR

qualidade atingida na colheita se mantenha por um maior intervalo de tempo, dentro do la compositiva de la chegada ao consumidor final, é imprescindível para minimizar as perdas producto vectora de levar mais alimento a população. (OLIVEIRA; SCIVITTARO, 2011). Sendo assim, é de fundamental importância na pós colheita o armazenamento adequado de mexericas a fim garantir a qualidade do produto que chega ao consumidor final. Segundo Pereira et al. (2006) recomenda que tangerinas sejam conservadas entre 5 e 10 °C, para um período de quatro a dez semanas. Nesse sentido, foi objetivado a caracterização e avaliação das características físicas de frutos de Mexerica-do-rio submetidos a armazenamento em atmosfera controlada.

METODOLOGIA

Os frutos de mexerica-do-rio (Citrus deliciosa Tenore.) foram oriundos do pomar da UFERSA, no município de Mossoró-RN, localizado na região semiárida. As mexericas foram colhidas no início da manhã, colhidos frutos maduros, apresentando duas diferentes colorações de cascas: predominantemente verde (P.V.) e predominantemente amarela (P.A.). Após a colheita os frutos foram transportados para o laboratório de pós-colheita da instituição, selecionados por uniformidade de tamanho e coloração, obtendo cinco amostras, cada uma com cinco repetições de quatro frutos, para cada uma das duas colorações de casca. O delineamento experimental utilizado foi o inteiramente casualizado em esquema de parcela subdividida no tempo, 2 x 5, sendo 2 (duas) colorações de casca e 5 (cinco) tempos de armazenamento (0, 12, 22, 32, e 40 dias após a colheita). Os frutos que passaram por períodos de armazenamento foram pré-refrigerados até atingir a temperatura de 8 °C e armazenadas numa temperatura de 6 °C (variação de ±6,7 °C) e umidade relativa de 85% (variação de ±10%). No laboratório os frutos passaram por avaliação físico. Foi avaliado massa fresca (g), obtido em balança semi-analítica, diâmetro longitudinal e transversal e espessura da casca, medidos individualmente com auxilio de paquímetro digital. Os dados obtidos foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey ao nível de 5% de probabilidade, com auxilio do programa computacional Sistema para Análise de Variância - Sisvar.

RESULTADOS E DISCUSSÃO:

De acordo com a análise de variância (Tabela 1), não houve efeito significativo para a interação dos fatores estudados com exceção da espessura da casca. Para os fatores isolados, observa-se efeito significativo para todos os fatores isolados.

Os frutos colhidos com coloração de casca verde apresentaram maiores médias de massa, comprimentos longitudinal e transversal e espessura da casca, com respectivos valores de 167,47 g, 61,26 mm, 74,77 mm e 2,51 mm. Os frutos com coloração de casca amarela apresentou maior média para perda de massa, 13,01%.

Contato@sinprovs.com.br WWW.SINPROVS.COM.BR

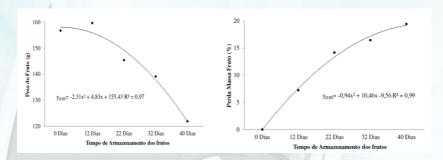
Tabela 1. Valores médios e Análise de variância das variáveis: massa dos frutos (MFT), comprimento la longitudinal (CLF), comprimento transversal (CTF), espessura da casca (ECS) e perda de massa (PMS). Mossoró-RN, 2015.

Fatores -						
		MSF	CLF	CTF	ECS	PMS
I	V – Verde	167,47a	61,26	74,77 a	2,51 a	32,93 b
	A – Amarelo	121,63b	50,32	65,64 b	1,98 b	41,17 a
II	0 Dias	156,70	58,09	72,40	2,82	40,72
	12 Dias	159,63	56,41	71,20	2,23	36,42
	22 Dias	145,38	56,19	71,33	2,53	33,46
	32 Dias	139,13	54,41	68,93	1,95	39,33
	40 Dias	121,92	53,83	67,14	1,69	35,34
	Média	144,55	55,79	70,20	2,24	11,47
	C.V (%)	12,15	5,2	5,40	12,82	26,52
II dentro I (V/A)		MSF	CLF	CTF	ECS	PMS
0 D	V	-		- \	3,38	7 -
	A A	-	1	-	2,26	-
1	2 V	- ·	H -		2,39	-
Di	as A	-	- (-	2,08	-
2	2 V	-	A - 1	-	2,79	-
Di	as A	-		-	2,27	-
3	2 V	\\-\	-	- /	2,27	-
Di	as A	-	-	- /	1,63	1
4	0 V	-	-	- /	1,73	/)
Di	as A	-	-	-/-	1,65	
		MSF	CLF	CTF	ECS	PMS
$I_{(2-1=1)}$		26267,75**	1497,33**	1042,49**	3,56**	117,43**
II ₍₅₋₁₌₄₎		2292,55**	29,01*	45,45 [*]	2,03**	613,87**
I x II _(1x4=4/Total=49)		265,28 ^{n.s}	15,08 ^{n.s}	2,67 ^{n.s}	0,38**	24,64 ^{n.s}

Médias seguidas de letras diferentes na coluna diferem estatisticamente, pelo teste de Tukey, a 5% de probabilidade.

** = $P \le 0.01$; * = $P \le 0.05$; ** = não significativo.

Os frutos apresentaram massa média na data da colheita de 156,7 g, peso médio semelhante aos 157,07 g encontrado por Malgarim; Cantillano; Treptow (2007) para Tangerinas cv. Clemenules. A relação entre comprimento transversal e longitudinal (CTF/CLF) é utilizada para definir o formato do fruto. A relação encontrada para a média dos frutos foi igual a 0,79. Uma razão, entre os dois parâmetros, menor que 1 atesta um formato achatado, comum para as variedades comercias de mexericas e tangerinas. Segundo Pio (1992), casca fina é uma das características de qualidade requeridas para citros – para o consumo *in natura*. Os frutos colhidos com coloração de casca amarela apresentaram uma menor média de espessura da casca, 1,98 mm, contra 2,51mm nos frutos verdes.


WWW.SINPROVS.COM.BR

Diferença que se deve, provavelmente, a um maior desenvolvimento da maturação nos

III SINPRITUTOS amarelos.

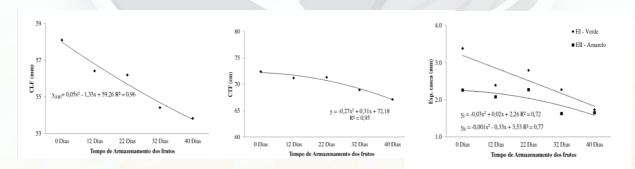

decréscimo para o peso em relação ao tempo, variando de 159 g para 121 g, variação de 37 g, apresentando um aumento na perda de massa da ordem de 19% ao fim de período de armazenamento, Figura 1 (b). A intensidade da perda de peso pelo processo transpiratório pode ter importância substancial durante a comercialização da fruta, pois, em alguns casos, altas perdas de peso podem resultar no murchamento e na perda de consistência, com redução na qualidade (AWAD, 1993).

Figura 1. Evolução do peso médio dos frutos (a) e da perda de massa (b) ao longo do armazenamento.

Observou-se decréscimo nas médias dos comprimentos longitudinal, transversal e espessura da casca (Figura 2). O comprimento longitudinal caiu de 58 mm para 53 mm, o transversal variou de 72 mm para 67 mm. A média da espessura da casca caiu de 2,8 mm para 1,7 mmm. Esses resultados indicam um murchamento dos frutos, ou seja, os frutos perderam qualidade.

Figura 2. Evolução dos comprimentos transversal, longitudinal e espessura da casca ao longo do armazenamento.

CONCLUSÕES

Os frutos com coloração amarelo obteve caracteriscas fisicas de boa qualidade com destaque para a casca fina e seu formato, em consumo *in natura*. Porem, foi observado que aos 40 dias de armazenamento os frutos alcançaram sua maior degradação em todas as variáveis análisadas.

AS.WOJ.SVORANIS.WWW. AS.EE-25EE (E8)

AWAD, M. Fisiologia pós-colheita de frutas. São Paulo, Nobel, 114p.1993.

III SINPROVS

http://www.IBGE.gov.br/sidra. Acesso em :24 jan. 2016.

MALGARIM, M. B.; CANTILLANO, R. F. F.; TREPTOW, R. O. Conservação de tangerina cv. *Clemenules* utilizando diferentes recobrimentos. **Acta Scientiarum Agronomy.** Maringá, v.29, n.1, 2007.

OLIVEIRA, R. P.; SCIVITTARO, W. B. **Cultivo de citros sem semente**. Pelotas: Embrapa clima temperado, 2011.

PEREIRA, M. E. C et al. **Procedimentos de pó-colheita na produção integrada de citros.** Cruz das Almas: Embrapa mandioca e fruticultura tropical, 2006.

PIO, R. M. **Caracterização e avaliação de oito variedades do grupo das tangerinas**. Piracicaba: ESALQ, 1992. Dissertação de mestrado.

SIMÃO, S. Tratado de fruticultura. Piracicaba: FEALQ, 1998.

