Contato@sinprovs.com.br WWW.SINPROVS.COM.BR

EFICÁCIA DE TÉCNICA NUCLEADORA ENLEIRAMENTO DE GALHADA PARA III 51 RESTAURAÇÃO DE ÁREA DEGRADADA NO SEMIÁRIDO DA PARAÍBA

EFFECTIVENESS OF NUCLEARING TECHNIQUE DETACHMENT OF SHELVES FOR RESTORATION OF DEGRADED AREA IN PARAIBA SEMIARID

Silva, JM¹; Leite, AP²; Silva, WTM¹; Leonardo, FAP¹; Souto, JS¹

¹Universidade Federal de Campina Grande, Centro de Saúde e Tecnologia Rural, 58.708-110, Patos-PB. Brasil. jailson_federa@hotmail.com; whenderson.ob@gmail.com; fap_leonardo@hotmail.com; jacob_souto@vahoo.com.br;

²Universidade Federal da Paraíba, Centro de Ciências Agrárias, 58.397-000, Areia-PB. Brasil. <u>arlistonpereira@gmail.com</u>;

RESUMO:

A desertificação é um processo de degradação que ocorre nas regiões áridas, semiáridas e subúmidas secas no mundo. No Nordeste do Brasil, as condições climáticas e sobretudo a acentuada evaporação, baixos índices pluviométricos e o uso da terra em meio à falta de políticas públicas agrárias efetivas concorrem para aumentar o risco de desertificação na região. O objetivo desse estudo foi avaliar a eficiência da técnica transposição de galhada para recuperação de área degradada no Núcleo de Desertificação do Seridó. O experimento foi realizado no período de agosto de 2017 a janeiro de 2018 na Fazenda Experimental Cachoeira de São Porfírio, Várzea, Paraíba. formada por resíduos de área de caatinga contígua a área experimental, a exemplo de árvores mortas, tocos e galhos, prevalecendo principalmente galhos da espécie *Croton blanchetianus* Baill. Utilizou-se o delineamento em blocos ao acaso, com cinco tratamentos e repetições. Os tratamentos tiveram os seguintes espaçamentos: I: 5,0m x 5,0m; tratamento II: 10,0m x 10,0m; tratamento III: 15,0m x 15,0m; tratamento IV: 20,0m x 20,0m e o testemunha inserido em área de preservação contígua aos demais tratamento. A parcela experimental é formada por quatro galhadas nos devidos espaçamentos. As galhadas sofreram alterações quanto ao volume ocupado, devido à diminuição na altura das mesmas. Usou-se o teste de Tukey a 5% de significância (p<0,01). O tratamento 5 foi superior na maioria dos meses avaliados, embora a diferença entre todos os tratamentos não tenha sido muito expressiva. As galhadas apresentaram redução do material formador ao longo dos meses de estudo.

Palavras-chave: Semiárido; Desertificação; Restauração; Decomposição; Transposição

Introdução:

O processo de desertificação no mundo tem-se acentuado devido às ações antrópicas, visto que o aumento da população mundial e o demasiado consumo têm feito com que a exploração dos recursos naturais para a sobrevivência e comercialização contribua para a expansão das áreas que estão em processo de desertificação (ALVES et al., 2009).

Na região semiárida do Nordeste brasileiro, o clima se apresenta como característica notável à irregularidade do regime pluviométrico, apresentando duas estações bem definidas: a estação chuvosa (inverno), que se prolonga de três a cinco meses, e a estação seca (verão), de sete a nove meses. As chuvas são torrenciais e irregulares no tempo e no espaço, promovendo periodicamente a ocorrência de secas prolongadas (SOUTO, 2006).

CONTATO@SINPROVS.COM.BR

A desertificação é um problema de dimensões globais que afeta as regiões de clima árido, semiárido e subúmido seco da Terra, resultante de vários fatores que envolvem variações climáticas e atividades humanas. Estão ligados a esse conceito as degradações do solo, fauna, flora e recursos hídricos (BRASIL, 2006; MMA, 2014).

Na região do Seridó paraibano, os frequentes cortes para uso de lenha, supressão para uso agrícola, ou pastoreio, e posteriormente a regeneração após abandono propiciaram a quebra do equilíbrio entre espécies pioneiras, intermediárias e tardias, na exposição do solo e perda do banco de sementes. A degradação é, ainda, proporcional ao tipo de alteração, à intensidade e ao tempo de uso do solo (COSTA et al., 2009).

O desenvolvimento atual começa a mostrar a necessidade de harmonizar as áreas produtivas com áreas de conservação, de forma a provocar uma aliança entre estas paisagens drasticamente fragmentadas. Para isto, a restauração de áreas degradadas, principalmente no sentido de aumentar a conectividade entre remanescentes naturais, torna-se uma ação fundamental para manter a qualidade de vida sobre o planeta Terra. Desta forma, o restaurador não é um ator, mas sim um promotor de eventualidades, no sentido de conservar contextos e processos do sistema, concebendo uma "Natureza Participativa" (REIS et al., 2018).

A técnica de transposição de galhada consiste no acúmulo de galhos, troncos e resíduos florestais, formando núcleos, atuando como refúgios artificiais para a fauna, por apresentar um clima mais favorável. Adicionalmente, estes abrigos também podem atuar como poleiros para avifauna (ESPÍNDOLA et al., 2006).

A transposição de galhadas é uma forma eficiente de obtenção de matéria orgânica ao solo para as áreas (gerada pela decomposição do material), criando condições adequadas à germinação de sementes e crescimento de espécies mais adaptadas aos ambientes sombreados e úmidos. As galhadas terão custo zero, pois o material é formado por resíduos obtidos de plantas da caatinga contígua às áreas experimentais, a exemplo de árvores mortas, troncos e galhos. O aproveitamento do mesmo terá grande contribuição local para a restauração e resgate de sementes e da fauna (MARIOT et al., 2008; SMA, 2011).

De acordo com as premissas o estudo teve como objetivo avaliar a eficiência da técnica transposição de galhada para recuperação de área degradada no Núcleo de Desertificação do Seridó.

Metodologia:

A área deste estudo encontra-se inserida no Núcleo de Desertificação do Seridó, situada na Fazenda Cachoeira de São Porfírio, município de Várzea-PB, cuja localização está entre as coordenadas 06° 48' 35" S e 36° 57' 15" W. a 271 m de altitude, na microrregião do Seridó Ocidental, Mesorregião da Borborema.

A precipitação anual na região de estudo varia de 350 a 800 mm, com média histórica de 600 mm e concentração de chuvas entre janeiro e abril. O período seco vai de julho a dezembro. A temperatura média anual é de 30,7 °C, com a máxima média ocorrendo em outubro (31 °C) e a mínima média em fevereiro (29,3 °C). A umidade relativa média é de 63%, sendo abril o mês mais úmido e novembro o mais seco. A insolação média anual é de 2981 horas (Costa et al., 2009).

WWW.SINPROVS.COM.BR

A temperatura média anual é de 30,7 °C, com a máxima média ocorrendo em outubro (31°C) e a mínima média em fevereiro (29,3 °C), a área de estudo apresenta solos de origem reconstructivos recisionales estudos a consensadores estudos estudos a consensadores estudos en estudos est

A vegetação é do tipo caatinga hiperxerófila com diferentes graus de antropismo, porte médio a baixo, não ultrapassando 5,0 metros de altura. A vegetação natural dessa área foi retirada para a utilização agrícola, principalmente a cultura algodoeira, por volta dos anos 1950. Após o abandono, esses campos foram utilizados como áreas de pastejo de caprinos e bovinos, regenerando parte da vegetação.

O enleiramento de galhadas ou simplesmente "leiras" foi instalado de agosto/17 a janeiro/18, sendo formada por resíduos obtidos de área de caatinga contígua a área experimental, a exemplo de árvores mortas, tocos e galhos, prevalecendo principalmente galhos da espécie *Croton blanchetianus* Baill. (Marmeleiro), por apresentar alta taxa de indivíduos mortos no local. Essas leiras foram dispostas em núcleos de 1,0 m x 1,0 m x 1,0 m (1,0 m³). Foram feitas observações sobre o uso das leiras por animais e o tempo de sua decomposição.

O experimento foi realizado utilizando-se o delineamento em blocos ao acaso, sendo cinco tratamentos com quatro repetições tendo uma distância de 10 metros entre blocos e 5 metros entre tratamentos, tendo o intuito de analisar as diferentes distâncias entre galhadas, sendo o tratamento I: 5,0 m x 5,0m; tratamento II: 10,0 m x 10,0 m; tratamento III: 15,0 m x 15,0 m; tratamento IV: 20,0 m x 20,0 m e o tratamento controle foi inserido em área de preservação contígua aos demais tratamentos, com espaçamentos aleatórios dentro da área. A parcela experimental é formada por quatro galhadas nos devidos espaçamentos.

Observações mensais foram realizadas e também registros fotográficos das leiras sendo utilizadas por animais, onde se avaliou o papel realizado por tais animais na realização do transporte de sementes de áreas adjacentes para as galhadas.

Resultados e Discussão:

As galhadas sofreram alterações quanto ao volume ocupado, devido à diminuição na altura das mesmas. Aplicado o teste de Tukey a nível de 5% de significância (p<0,01), constatou-se que as médias de redução da altura das galhadas apresentaram diferenças significativas entre os tratamentos estudados, assim como também a redução da altura das galhadas (Figura 1).

WWW.SINPROVS.COM.BR

AB AB AB 100 BC ABCAB 90 Altura da Galhada (%) 80 Redução da Altura 70 60 8 50 40 30 20 10 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Setembro Outubro Dezembro Agosto Novembro Janeiro Tratamentos/Meses

Figura 1. Altura (%) e Redução (cm) de galhadas sob diferentes espaçamentos no Núcleo de desertificação do Seridó, Várzea, Paraíba, Brasil

O tratamento 5 foi superior na maioria dos meses avaliados, embora a diferença entre todos os tratamentos não tenha sido muito expressiva. A presença do mesmo tipo de material para a formação das galhadas pode ter influenciado nessa semelhança dos resultados.

Em estudo realizado por Bechara (2003), em Florianópolis-SC, utilizando galhada residual de espécies nativas (*Clusia criuva*, *Myrcia rostrata*, *Gomidesia palustres*, *Alchornea triplinervia* e *Pera glabrata*), foi verificado que após oito meses todos os resíduos foram quase que integralmente decompostos ao solo, mostrando que o grau de decomposição do material pode influenciar na redução de altura das galhadas implantadas no experimento. Esse mesmo autor afirma que, para galhadas formadas por *Pinus*, necessitou-se de muito mais tempo para decomposição, levando em torno de 30 meses para que ficassem quase que totalmente incorporadas ao solo (BECHARA, 2006). Esses dados comprovam que a taxa de redução das galhadas varia de acordo com o tipo de material que as constitui e com as condições climáticas da região, no caso do Semiárido normalmente apresentando índices pluviométricos baixos essa taxa também tende a diminuir.

Silveira et al. (2015) no Núcleo de Desertificação do Seridó em Várzea-PB, concluíram que o material formador das galhadas apresentou decomposição mais rápida, pois as galhadas que possuíam inicialmente 1,0 m de altura, após doze meses de estudo, foram reduzidas a uma altura de ± 0,40 m; entretanto, vale salientar as possíveis diferenças na estrutura e formação dessas galhadas comparadas às deste estudo, como as dimensões dos galhos e as condições climáticas no período estudado. Segundo os autores, essa decomposição aumentou o conteúdo de matéria orgânica no solo, sendo fonte de nutrientes para plantas e para a biota do solo.

Conclusões:

III SINPR

As galhadas apresentaram redução do material formador ao longo dos seis meses de estudo.

Agradecimentos:

CNPq, CAPES, UFCG, Mário Medeiros Damasceno

Paraíba. Raega - O Espaço Geográfico em Análise, v. 17, p.139-152, 2009.

BECHARA, F. C. Unidades Demonstrativas de Restauração Ecológica através de **Técnicas Nucleadoras: Floresta Estacional Semidecidual, Cerrado e Restinga.** 2006. 248 f. Tese (Doutorado em Recursos Florestais - Conservação de Ecossistemas Florestais) - Universidade de São Paulo/Esalq, Piracicaba, 2006.

BECHARA, F.C. Restauração ecológica de restingas contaminadas por Pinus no Parque Florestal do Rio Vermelho, Florianópolis, SC. 2003. 136 f. Dissertação (Mestrado em Biologia Vegetal) – Universidade Federal de Santa Catarina, Florianópolis, 2003.

BRASIL. **Convenção das Nações Unidas de combate à desertificação.** Brasília, Distrito Federal: MMA/SRH, 2006.

COSTA, T.C.C.; OLIVEIRA, M.A.J.; ACCIOLY, L.J.O.; SILVA, F.H.B.B. Análise da degradação da caatinga no núcleo de desertificação do Seridó (RN/PB). **Revista Brasileira de Engenharia Agrícola e Ambiental,** v.13, p. 961-974, 2009.

ESPINDOLA, M. B.; REIS, A.; SCARIOT, E. C.; TRES, D. R. **Recuperação de áreas degradadas:** a função das técnicas de nucleação. 2006. Disponível em: http://www.lras.ufsc.br/images/stories/art_marina-ademir.pdf>. Acesso em: 24 mar. 2018.

MMA. Ministério de Meio Ambiente. **Desertificação.** 2014. Disponível em: http://www.mma.gov.br/. Acesso em: 24 mar. 2018.

REIS, A. **Conceitos de recuperação e restauração.** In: Textos e Artigos sobre Recuperação de Áreas Degradadas. Laboratório de Restauração Ambiental Sistêmica — CCB/UFSC. 2002. Disponível em: http://lras.ufsc.br/>. Acesso em: 24 mar. 2018.

SILVEIRA, L.P.; SOUTO, J.S.; DAMASCENO, M.M.; MUCIDA, D.P.; PEREIRA, I.M. Poleiros artificiais e enleiramento de galhada na restauração de área degradada no semiárido da Paraíba, Brasil. **Nativa,** v. 3, n. 3, p. 164-170, 2015.

SMA. **Restauração ecológica:** sistemas de nucleação. Secretaria de Estado do Meio Ambiente, Unidade de Coordenação do Projeto de Recuperação das Matas Ciliares. (Eds.) KUNTSCHIK, D.P.; EDUARTE, M.; ARMELIN, R.S.; Reimpressão da 1.ed. – São Paulo: SMA, 2011.

SOUTO, P.C. Acumulação e decomposição de serapilheira e distribuição de organismos edáficos em área de caatinga na Paraíba, Brasil. 2006. 150 f. Tese (Doutorado em Agronomia) – Universidade Federal da Paraíba, Areia, 2006.

