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INTRODUCTION

Spinal cord injury (SCI) is a serious condition that leads to sudden 
loss of motor, autonomic and sensory function. The tissue injury 
associated with SCI is determined by a cascade of pathophysio-

logical events that cause cell death, axonal loss, myelin degradation, 
infiltration and activation of immune cells, disruption of the spinal 
cord blood barrier, and glial scar formation. Vascular changes also 
occur and subsequent edema, ischemia, and hypoxia, production 
of cytokines, free radicals and lipid peroxidation, disruption of ionic 
balance, and excitotoxicity. These events impair neural regenera-
tion and restoration of motor function (ANWAR, 2016, p. 98; PRÜSS, 
2017, p.1549; KRONER, 2019, p. 134370; ZIMMERMANN, 2021, p. 
353).

Thus, SCI is considered a multifactorial disease that seriously 
reduces the patient’s quality of life, and there is currently no treat-
ment with the potential for rehabilitation. Therefore, it is extremely 
important to develop new therapeutic strategies in this area that 
prevent the increase of severity of tissue damage.

Recently, many techniques based on nanotechnology have been 
proposed to improve tissue regeneration. Above all, nanoparticles, 
have interesting properties in the field of regenerative medicine, 
such as an ability to increase drug bioavailability. Furthermore, they 
potentiate drug penetration, exhibit excellent biocompatibility and 
reproducible microscopic structure (NEJATI-KOSHKI, 2017, p.85; 
NICOLA, 2017, p.95; FIROUZI-AMANDI, 2018, p.773; REIS, 2018, 
p.785; NICOLA, 2019, p.748).

Several studies have provided clear evidence that nicotine, an 
alkaloid that constitutes the active principle of tobacco, has powerful 
pathophysiological effects on the body, through anti-inflammatory 
properties. Studies suggest that nicotine improves tissue healing, 
increasing vascularization by stimulating angiogenesis, decreasing 
inflammation around the injury site, and accelerating fibrogenesis 
(HOU, 2008, p. 983; KENNETH, 2011, p. 349; PONS, 2011, p. 3842; 
KIM, 2017, p. e0179982).

In this work, different oils have been used in the preparation 
of nanocapsules (NCs), and the objective is to encapsulate the nico-
tine for the treatment of SCI and to compare in terms of diameter, 
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polydispersity index (PdI), zeta potential, and encapsulation effi-
ciency (EE).

METHODOLOGY

The nanocapsules (NCs) were prepared using poly (lactic-co-
glycolic acid) (PLGA) through the technique of interfacial polymer 
deposition, where the emulsions were formed by deposition of an oil 
phase (OP) on an aqueous phase (AP), under vigorous magnetic stir-
ring for 10 min at 40°C. Following this, the excess solvent and water 
were evaporated in a rotary evaporator at 40°C.

The group I was composed of PLGA, grape seed oil, acetone, 
Span 80, and nicotine in OP and distilled water and Triton X100 in 
AP. Group II was formed by PLGA, castor oil, acetone, Span 80, and 
nicotine in OP and distilled water and Triton X100 in AP. Group III was 
formed by PLGA, copaiba oil, acetone, Span 80, and nicotine in OP 
and distilled water and Triton X100 in AP. Group IV was composed 
of PLGA, açaí oil, acetone, Span 80, and nicotine in OP and distilled 
water and Triton X100 in AP.

The average size of the nanocapsules and the respective polydis-
persity index (PdI) were determined by the dynamic light scattering 
method (ZetaSizer Nano ZS, Malvern Instruments, Worcestershire, 
UK).

The encapsulation efficiency of nicotine in the nanocapsules 
was determined by the Liquid Chromatograph - Mass Spectrometer 
(LC-2040C Plus, Nexera-i, Shimadzu, Europe, equipped with the 
Shimadzu Shim-pack 100 C18 column). The following parameters 
were used: temperature 50°C, injected volume 0,5 μL, mobile faze A 
water and 0,1% acid formic, mobile faze B acetonitrile and 0,1% acid 
formic, and a flux 0.3 mL/min.

The sample was diluted in 0,5 mL of methanol, filtered, and 
injected into the LC-MS system. For determining the encapsulation 
efficiency, the samples were filtered in microfiltration tubes compo-
sed of 0.1 μm pore membranes (MilliPore) by centrifugation

(Thermo Scientific, SL8R, São Paulo, Brazil) for 10 min at 6000 
rpm, and the supernatants were collected. Nicotine content in the 
supernatants (free nicotine) was also determined by LC-MS. The 
encapsulation efficiency was calculated as follows:



 
 

 

 
 

 

10.46943/II.3DBB.2022.01.013

ISBN 978-65-86901-56-6

84

CAPA  -  COMITÊ EDITORIAL - SUMÁRIO

Encapsulation efficiency = (total nicotine content in formulation - 
free nicotine) × 100/total nicotine content in formulation

RESULTS AND DISCUSSION

The NCs of Group I exhibited an average diameter of 214.9 nm, 
PdI of 0.351, zeta potential of -47.5 mv, and EE of 15.88%. Group II 
presented the average values: diameter of 207.7 nm, PdI of 0.271 
and zeta potential of -27.2 mv, and EE of 91.27%. The NCs of Group 
III exhibited the average values: diameter of 190.2 nm, PdI of 0.421, 
zeta potential of -35.5 mv, and EE of 37.3%. Group IV presented the 
average values: diameter of 121.4 nm, PdI of 0.418, zeta potential of 
-22.3 mv, and EE of 32.45%.

These results reveal that the nanocapsules of all the groups 
have a suitable size and polydispersion, and also present values of 
zeta potential that reveal that the charges present on the surface 
of the nanocapsules prevent coalescence between them, avoiding 
the agglutination, attesting to their stability (SCHAFFAZICK, 2003, p. 
726; MORAES, 2010, p. 995).

The encapsulation efficiency is highly dependent on the 
composition of the capsule core. The characteristics of the drug 
encapsulated, the oil used, and the presence of surfactants may faci-
litate drug solubilization (SCHAFFAZICK, 2003, p. 726). In this study, 
the NCs of Group II showed high encapsulation efficiency (91.27% of 
the total added), which means that this is the amount of drug stored 
in the nanocapsule core.

FINAL CONSIDERATIONS

In this study, it was possible to produce PLGA nanocapsules con-
taining nicotine that were satisfactorily characterized about to their 
zeta potential, diameter, polydispersity index. It was also possible to 
verify that the nanocapsules of Group II presented excellent encap-
sulation efficiency concerning the other groups. The next phase will 
be the evaluation of the NC release profile.

Keywords: spinal cord injury; nanocapsules; poly (lactic-co-gly-
colic acid); nicotine
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